Learning Human Priors for Task-Constrained Grasping
نویسندگان
چکیده
An autonomous agent using manmade objects must understand how task conditions the grasp placement. In this paper we formulate task based robotic grasping as a feature learning problem. Using a human demonstrator to provide examples of grasps associated with a specific task, we learn a representation, such that similarity in task is reflected by similarity in feature. The learned representation discards parts of the sensory input that is redundant for the task, allowing the agent to ground and reason about the relevant features for the task. Synthesized grasps for an observed task on previously unseen objects can then be filtered and ordered by matching to learned instances without the need of an analytically formulated metric. We show on a real robot how our approach is able to utilize the learned representation to synthesize and perform valid task specific grasps on novel objects.
منابع مشابه
Learning Constrained Generalizable Policies by Demonstration
Many practical tasks in robotic systems, such as cleaning windows, writing or grasping, are inherently constrained. Learning policies subject to constraints is a challenging problem. We propose a locally weighted constrained projection learning method (LWCPL) that first estimates the constraint and then exploits this estimate across multiple observations of the constrained motion to learn an un...
متن کاملActive Reward Learning
While reward functions are an essential component of many robot learning methods, defining such functions remains a hard problem in many practical applications. For tasks such as grasping, there are no reliable success measures available. Defining reward functions by hand requires extensive task knowledge and often leads to undesired emergent behavior. Instead, we propose to learn the reward fu...
متن کاملOn computing task-oriented grasps
This paper addresses the problem of optimal grasping of an object with a multi-fingered robotic hand for accomplishing a given task. The task is first demonstrated by a human operator and its force/torque requirements are captured through the usage of a sensorized tool. The grasp quality is computed through a task compatibility criterion. Grasp synthesis is then formulated as a single constrain...
متن کاملRelational Affordance Learning for Task-Dependent Robot Grasping
Robot grasping depends on the specific manipulation scenario: the object, its properties, task and grasp constraints. Object-task affordances facilitate semantic reasoning about pre-grasp configurations with respect to the intended tasks, favouring good grasps. We employ probabilistic rule learning to recover such object-task affordances for task-dependent grasping from realistic video data.
متن کاملIncorporating External Evidence in Reinforcement Learning via Power Prior Bayesian Analysis
Power priors allow us to introduce into a Bayesian algorithm a relative precision parameter that controls the influence of external evidence on a new task. Such evidence, often available as historical data, can be quite useful when learning a new task from reinforcement. In this paper, we study the use of power priors in Bayesian reinforcement learning. We start by describing the basics of powe...
متن کامل